
A Tiny Specification Metalanguage

Walter Wilson, Yu Lei

Dept. of Computer Science and Engineering,

The University of Texas at Arlington

Arlington, Texas 76019, USA

wwwilson1@sbcglobal.net, ylei@cse.uta.edu

Abstract— A logic programming language with potential software

engineering benefit is described. The language is intended as a

specification language where the user specifies software

functionality while ignoring efficiency. The goals of the language

are: (1) a pure specification language – “what, not how”, (2) small

size, and (3) a metalanguage – able to imitate and thus subsume

other languages. The language, called “axiomatic language”, is

based on the idea that any function or program can be defined by

an infinite set of symbolic expressions that enumerates all

possible inputs and the corresponding outputs. The language is

just a formal system for generating these symbolic expressions.

Axiomatic language can be described as pure, definite Prolog

with Lisp syntax, HiLog higher-order generalization, and “string

variables”, which match a string of expressions in a sequence.

Keywords- specification; metalanguage; logic programming;

Prolog; HiLog; Lisp; program transformation

I. INTRODUCTION

Programming languages affect programmer productivity.
Prechelt [1] found that the scripting languages Perl, Python,
Rexx, and Tcl gave twice the productivity over conventional
languages C, C++, and Java. A factor of 4-10 productivity gain
has been reported for the declarative language Erlang [2]. Both
studies showed that lines of source code per hour were roughly
the same, regardless of language.

With current programming languages programmers
generally keep efficiency in mind. Even in the logic program-
ming field, which is supposed to be declarative, the
programmer must understand the execution process in order to
write clauses that terminate and are efficient. Program
transformation potentially offers a way of achieving the goal of
declarative programming where one can write specifications
without considering their implementation and then have them
transformed into efficient algorithms. One may thus ask what
kind of programming language would we want if we could
ignore efficiency and assume that a smart translator could
transform our specifications?

This paper describes a logic programming language called
“axiomatic language” [3] that is intended to be such a
programming/specification language. The goals of the
language are as follows:

1) a pure specification language – There are no language
features to control program execution. The program-
mer writes specifications while ignoring efficiency and
implementation. Program transformation is thus
required. We assume that a translator can be built that

can transform the specifications into efficient
programs.

2) small, but extensible – The language should be as
small as possible with semantics as simple as possible.
Nothing is built-in that can be defined. This means
that arithmetic would not be built-in. (We assume the
smart translator can “recognize” the definitions of
arithmetic and replace them with the corresponding
hardware operations.) Of course, any small language
must also be highly extensible, so that those features
which are not built-in can be easily defined and used
for specification as if they had been built-in.

3) a metalanguage – There are many ways in which one
might want to specify software: first-order logic, set
operations, domain specific languages, even a
procedural language, etc. An ideal language would be
able to define within itself other language features and
paradigms, which the user could then use for software
specification. With such a metalanguage capability,
one could not only define functions, but also define
new ways of defining functions.

We also have the goal of beauty and elegance for the language.

Axiomatic language is based on the idea that the external
behavior of a program – even an interactive program – can be
specified by a static infinite set of symbolic expressions that
enumerates all possible inputs – or sequences of inputs – along
with the corresponding outputs. Axiomatic language is just a
formal system for defining these symbolic expressions.

Section II defines the language and section III gives
examples. Section IV shows how symbolic expressions can be
interpreted as the input and output of real programs. Section V
discusses the novel aspects of the language and section VI
gives conclusions. This paper extends an earlier publication [4]
with syntax extensions and higher-order examples.

II. THE LANGUAGE

This section defines axiomatic language, which is intended
to fulfill the objectives identified in the introduction. Section A
introduces the language informally with examples. The
semantics and syntax of the core language are defined in
section B, and section C gives some syntax extensions.

A. An Overview

Axiomatic language can be described as pure definite
Prolog with Lisp syntax, HiLog [5] higher-order generalization,

mailto:wwwilson1@sbcglobal.net
mailto:ylei@cse.uta.edu

and “string variables”, which match a string of expressions in a
sequence. A typical Prolog predicate is represented in
axiomatic language as follows:

 father(sue,X) -> (father Sue %x)

Predicate and function names are moved inside the parentheses,
commas are replaced with blanks, “expression” variables start
with %, and both upper and lowercase letters, digits, and most
special characters can be used for symbols.

Clauses, or “axioms” as they are called here, are essentially
the same as in traditional logic programming, as shown by the
following definitions of natural number operations in successor
notation:

 (number 0). ! set of natural numbers

 (number (s %n))< (number %n).

 (plus 0 % %)< (number %). ! addition

 (plus (s %1) %2 (s %3))< (plus %1 %2 %3).

 (times 0 % 0)< (number %). ! multiplication

 (times (s %1) %2 %3)< (times %1 %2 %x),

 (plus %x %2 %3).

The symbol < replaces the Prolog symbol :- and comments
start after !. These axioms generate “valid expressions” such as
(number (s (s (s 0)))) and (plus (s 0) (s (s 0)) (s (s (s 0)))),
which are interpreted as the statements “3 is a number” and “1
+ 2 = 3”, respectively.

The two main features of axiomatic language in comparison
to Prolog are its higher-order property and string variables.
The higher-order property comes from the fact that predicate
and function names can be arbitrary expressions, including
variables, and that variables can represent entire predicates in
axioms. Section III.A gives some higher-order examples.

The other major feature of axiomatic language is its string
variables. A string variable, beginning with $, matches zero or
more expressions in a sequence, while an expression variable
%... matches exactly one. String variables enable more concise
definitions of predicates on lists:

 (append ($1) ($2) ($1 $2)) ! concatenation

 (member % ($1 % $2)). ! member of sequence

 (reverse () ()). ! reversing a sequence

 (reverse (% $) ($rev %))<

 (reverse ($) ($rev)).

Some example valid expressions are (append (a b) (c d) (a b
c d)) and (member c (a b c)). String variables can be
considered a generalization of Prolog's list tail variables. For
example, the Prolog list [a, X | Z] would be represented in
axiomatic language as the sequence (a %X $Z). But string
variables can occur anywhere in a sequence, not just at the end.
Note that sequences in axiomatic language are used both for
data lists and term arguments. This single representation is
convenient for representing code as data.

B. The Core Language

This section gives the definitions and rules of axiomatic
language, while the next section gives some syntax extensions.
In axiomatic language, functions and programs are specified by

a finite set of “axioms”, which generate a (usually) infinite set
of “valid expressions”, analogous to the way productions in a
grammar generate strings. An expression is

an atom – a primitive, indivisible element,
an expression variable,
or a sequence of zero or more expressions and string
variables.

The hierarchical structure of expressions is inspired by the
functional programming language FP [6].

Atoms are represented syntactically by symbols starting

with the backquote: `abc, `+. (The non-variable symbols
seen previously are not atoms, as section C explains.)
Expression and string variables are represented by symbols

beginning with % and $, respectively: %expr, %, and $str,

$1. A sequence is represented by a string of expressions and

string variables separated by blanks and enclosed in

parentheses: (`xyz %n), (`M1 $ ()).

An axiom consists of a conclusion expression and zero or
more condition expressions, in one of the following formats:

 conclu < cond1, …, condn. ! n>0

 conclu. ! an unconditional axiom

Axioms may be written in free format over multiple lines and a
comment may appear on the right side of a line, following an
exclamation point. Note that the definition of expressions
allows atoms and expression variables to be conclusion and
condition expressions in axioms.

An axiom generates an axiom instance by the substitution
of values for the expression and string variables. An
expression variable can be replaced by an arbitrary expression,
the same value replacing the same variable throughout the
axiom. A string variable can be replaced by a string of zero or
more expressions and string variables. For example, the axiom,

 (`a (%x %y) $1)< (`b %x $w), (`c $w %y).

has an instance,

 (`a ((` %) `y))< (`b (` %) () `v),

 (`c () `v `y).

by the substitution of (` %) for %x, `y for %y, the string ‘()

`v’ for $w and the empty string for $1.

The conclusion expression of an axiom instance is a valid
expression if all the condition expressions of the axiom
instance are valid expressions. By default, the conclusion of an
unconditional axiom instance is a valid expression. For
example, the two axioms,

 (`a `b).

 ((%) $ $)< (% $).

generate the valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b

`b), etc. Note that the semantics of axiomatic language is based
on definitions that enumerate a set of hierarchical expressions
and not on the operation of a resolution algorithm. Note also
that valid expressions are just abstract symbolic expressions
without any inherent meaning. Their association with real
computation and inputs and outputs is by interpretation, as
described in section IV.

C. Syntax Extensions

The expressiveness of axiomatic language is enhanced by
adding syntax extensions to the core language. A single
printable character in single quotes is syntactic shorthand for an
expression that gives the binary code of the character:

 ’A’ = (`char (`0 `1 `0 `0 `0 `0 `0 `1))

This underlying representation, which would normally be
hidden, provides for easy definition of character functions and
relations, which are not built-in.

A character string in single quotes within a sequence is
equivalent to writing the single characters separately:

 (… ’abc’ …) = (… ’a’ ’b’ ’c’ …)

A character string in double quotes represents a sequence of
those characters:

 ”abc” = (’abc’) = (’a’ ’b’ ’c’)

A single or double quote character is repeated when it occurs in
a character string enclosed by the same quote character:

”’””” = (’’’”’)=(’’’’ ’”’).

A symbol that does not begin with one of the special

characters ` % $ () ’ ” ! is equivalent to an

expression consisting of the atom ` and the symbol as a
character sequence:

 abc = (` ”abc”)

This is useful for higher-order definitions, decimal number
representation, and for defining inequality between symbols,
which is not built-in.

Other syntax extensions might be useful, such as in-line
text, macros, or indentation-based syntax. Any syntax exten-
sion that has a clear mapping to the core language could be
considered as an addition to the language. We view the
definitions and rules of the core language as fixed and
permanent, but its syntactic realization and any syntax
extensions are open to refinement and enhancement.

III. EXAMPLES

This section gives some examples of axiomatic language
and discusses its features. Section A gives examples of higher-
order definitions and section B shows the metalanguage
capability of the language.

A. Higher-Order Definitions

In axiomatic language, variables can be used for predicate
names and for entire predicates. These higher-order constructs
can be powerful tools for defining sets and relations. For
example, a predicate for a finite set can be defined in a single
expression, as follows:

 (%set %elem)<(finite_set %set ($1 %elem $2)).

 ! used to define finite sets:

 (finite_set day

 (Sun Mon Tue Wed Thu Fri Sat)).

These axioms generate valid expressions such as (day Tue).
Similarly, instead of defining facts in separate axioms, as

would be done in Prolog, we can generate them from a single
expression, as follows:

 % < (valid $1 % $2).

 ! specify multiple facts in one expression:

 (valid (father Sue Tom)

 (father Bill Tom)

 (father Jane Bill)).

From this we get valid expressions such as (father Jane Bill).

The higher-order capability allows valid expressions to be
combined into a single expression. The following axioms form
lists of expressions that are all valid:

 (all_valid).

 (all_valid % $)< % , (all_valid $).

 ! all expressions in list are valid:

 (grandparent %x %z)<

 (all_valid (parent %x %y) (parent %y %z)).

This expression represents the conjunction of valid expressions.
We can also have a condition that asserts that at least one
expression in a list is valid:

 (one_valid $1 % $2)< % .

 ! at least one expression in list is valid:

 (parent %x %y)<

 (one_valid (mother %x %y) (father %x %y)).

This represents valid expression disjunction.

Axioms themselves can be represented as expressions. We
can represent a single axiom in an expression as follows:

 %conclu < (axiom %conclu $conds),

 (all_valid $conds).

 ! specify axiom in a single expression:

 (axiom (sort %1 %2)

 (permutation %1 %2) (ordered %2)).

This is easily extended to represent a set of axioms in a single
expression:

 (axiom $axiom)< (axiom_set $1 ($axiom) $2).

 ! a set of axioms in a single expression:

 (axiom_set ((length () 0)) ! sequence length

 ((length (% $) (s %n)) (length ($) %n))).

This last axiom generates valid expressions such as (length (a b
c) (s (s (s 0)))).

The mapping of a relation or function to lists of arguments
is easily defined. First we need a utility that generates
sequences of zero-or-more copies of an expression:

 (zero_or_more % ()).

 (zero_or_more % (% $))< (zero_or_more % ($)).

We also need a utility that distributes a sequence of elements
over the fronts of sequences:

 (distr () () ()). ! distr elems over seqs

 (distr (%el $els) (($seq) $seqs)

 ((%el $seq) $seqsx))<

 (distr ($els) ($seqs) ($seqsx)).

Now we make use of symbol representation to map previously-
defined functions and relations to sequences of arguments:

 ((` ($rel ’*’)) $nulls)< ! empty arg seqs

 (zero_or_more () ($nulls)).

 ((` ($rel ’*’)) $argseqsx)< !non-empty seqs

 ((` ($rel ’*’)) $argseqs),

 ((` ($rel)) $args), ! relation to map

 (distr ($args) ($argseqs) ($argseqsx)).

The expression (` ($rel)) matches the symbol for the relation
name and (` ($rel '*')) represents that symbol with an asterisk
appended. These axioms generate valid expressions such as
(day* (Sat Tue Tue)) and (append* ((a b) ()) ((c) (u v)) ((a b c)
(u v))). Note that our mapping definition automatically applies
to predicates of any arity. The higher-order property of
axiomatic language is essentially the same as that of HiLog.
That is, the language has higher-order syntax but the semantics
are really first-order.

B. Metalanguage Examples

The higher-order property and string variables along with
the absence of commas give axiomatic language its
metalanguage property – its ability to imitate other languages.
In this section we define the evaluation of nested functions in
Lisp format. First we need decimal number representation:

 (finite_set digit ”0123456789”). ! digits

 (index %set %elem %index)< ! index for elems

 (finite_set %set ($1 %elem $2)),

 (length ($1) %index).

 ! -> (index digit ’2’ (s (s 0)))

 (dec_sym (` (%digit)) %value)<

 (index digit %digit %value).

 ! -> (dec_sym 1 (s 0)) -- single digit

 (dec_sym (` ($digits %digit)) %valuex)<

 (dec_sym (` ($digits)) %value),

 (index digit %digit %n),

 (length (* * * * * * * * * *) %10),

 (times %value %10 %10val),

 (plus %10val %n %valuex). ! multi digits

These axioms generate valid expressions, such as (dec_sym

325 (s (s … (s 0)…))), which give the natural number
value for a symbol of decimal digits. We use the length
function to hide the representation for the natural number 10.
Now we define the evaluation of nested expressions:

 (eval (quote %expr) %expr). ! identity fn

 (eval %dec_sym %value)< ! decimal num

 (dec_sym %dec_sym %value).

 (eval (%fn $args) %result)< ! eval func

 (eval* ($args) ($results)), ! eval args

 (%fn $results %result). ! func result

These axioms turn some of the previously-defined predicates
into functions which can be applied in a Lisp-like manner:

 (eval (times (length (append (quote (a b c))

 (reverse (quote (e d)))))

 (plus 3 17)

) %value)

When this expression is used as a condition, the variable
%value will get instantiated to the natural number
representation for 100. Of course, these nested expressions
only make sense when formed from predicates that are
functions that yield a single result as the last argument.

A contrasting procedural-language example can be found in
the original paper [4].

IV. SPECIFICATION BY INTERPRETATION

We want to specify the external behavior of a program
using a set of valid expressions. A program that maps an input
file to an output file can be specified by an infinite set of
symbolic expressions of the form

 (Program <input> <output>)

where <input> is a symbolic expression for a possible input
file and <output> is the corresponding output file. For
example, a text file could be represented by a sequence of lines,
each of which is a sequence of characters. A program that sorts
the lines of a text file could be defined by valid expressions
such as the following:

 (Program (”dog” ”horse” ”cow”) ! input

 (”cow” ”dog” ”horse”)) ! output

Axioms would generate these valid expressions for all possible
input text files.

An interactive program where the user types lines of text
and the computer types lines in response could be represented
by valid expressions such as

 (Program <out> <in> <out> <in> …

 <out> <in> <out>)

where <out> is a sequence of zero or more output lines typed
by the computer and <in> is a single input line typed by the
user. Each Program expression gives a possible execution
history. Valid expressions would be generated for all possible
execution histories. This static set of symbolic expressions is
interpreted to represent real inputs and outputs over time. This
is a completely pure approach to the awkward problem of
input/output in declarative languages [7] and avoids Prolog's
ugly, non-logical read/write operations. Example programs can
be found at the language website [3].

V. NOVELTY AND RELATED WORK

This section discusses some of the more novel aspects of
axiomatic language in comparison to Prolog and other
languages:

(1) specification by interpretation – We specify the external
behavior of programs by interpreting a static set of symbolic
expressions. Even languages with "declarative” input/output
[9] have special language features, but axiomatic language has
no input/output features at all – just interpretation of the
generated expressions.

(2) definition vs. computation semantics – Axiomatic language
is just a formal system for defining infinite sets of symbolic
expressions, which are then interpreted. Prolog semantics, in
contrast, are based on a model of computation.

(3) Lisp syntax – Axiomatic language, like some other logic
programming languages (MicroProlog [10], Allegro [11]), uses
Lisp syntax. This unified representation for code and data
supports metaprogramming.

(4) higher-order – Predicate and function names can be
arbitrary expressions, including variables, and entire predicates
can be represented by variables. This is the same as in HiLog,
but with Lisp syntax. The XSB [12] implementation of HiLog,

however, does not allow variables for head predicates in
clauses [13]. Higher-order programming can be done in
standard Prolog, but requires special features, such as the ‘call’
predicate. [14]

(5) non-atomic characters – Character representation is not
part of the core language, but defined as a syntax extension.
There are no built-in character functions, but instead these
would be defined in a library.

(6) non-atomic symbols – Non-atomic symbols eliminate the
need for built-in decimal numbers, since they can be easily
defined through library utilities.

(7) flat sequences – Sequences in axiomatic language are
completely "flat" compared with the underlying head/tail “dot”
representation of Prolog and Lisp.

(8) string variables – These provide pattern matching and
metalanguage support. String variables can yield an infinite set
of most-general unifications. For example, ($ a) unifies with (a
$) with the assignments of $ = '', 'a', 'a a',

(9) metalanguage – The flexible syntax and higher-order
capability makes axiomatic language well-suited to meta-
programming, language-oriented programming [15], and
embedded domain-specific languages [16]. This language
extensibility is similar to that of Racket [17], but axiomatic
language is smaller.

(10) no built-in arithmetic or other functions – The minimal
nature and extensibility of axiomatic language means that basic
arithmetic and other functions are provided through a library
rather than built-in. But this also means that such functions
have explicitly defined semantics and are more amenable to
formal proof.

(11) explicit definition of approximate arithmetic – Since there
is no built-in floating point arithmetic, approximate arithmetic
must also be defined in a library. But this means symbolically
defined numerical results would always be identical down to
the last bit, regardless of future floating point hardware.

 (12) negation – In axiomatic language a form of negation-as-
failure could be defined on encoded axioms.

(13) no non-logical operations such as cut – This follows from
there being no procedural interpretation in axiomatic language.

(14) no meta-logical operations such as var, setof, findall –
These could be defined on encoded axioms.

(15) no assert/retract – A set of axioms is static. Modifying
this set must be done “outside” the language.

VI. CONCLUSIONS

A tiny logic programming language intended as a pure
specification language has been described. The language
defines infinite sets of symbolic expressions which are
interpreted to represent the external behavior of programs. The
programmer is expected to write specifications without concern
about efficiency.

 Axiomatic language should provide increased programmer
productivity since specifications (such as the earlier sort
definition) should be smaller and more readable than the

corresponding implementation algorithms. Furthermore, these
definitions should be more general and reusable than
executable code that is constrained by efficiency. Note that
most of the axioms of this paper could be considered reusable
definitions suitable for a library. Axiomatic language has fine-
grained modularity, which encourages the abstraction of the
general parts of a solution from specific problem details and
minimizes boilerplate code. The metalanguage capability
should enable programmers to define a rich set of specification
tools.

The challenge, of course, is the efficient implementation of
the programmer's specifications. [18] Higher-order definitions
and the metalanguage capability are powerful tools for software
specification, but make program transformation essential. The
difficult problem of transformation should be helped, however,
by the extreme simplicity and purity of the language, such as
the absence of non-logical operations, built-in functions, state
changes, and input/output. Future work will address the
problem of transformation.

REFERENCES

[1] L. Prechelt, “An empirical comparison of seven programming
languages,” IEEE Computer, vol. 33, no. 10, pp. 23-29, October 2000.

[2] U. Wiger, “Four-fold increase in productivity and quality”, Ericsson
Telecom AB, 2001.

[3] http://www.axiomaticlanguage.org

[4] W. W. Wilson, “Beyond Prolog: software specification by grammar,”
ACM SIGPLAN Notices, vol. 17, #9, pp. 34-43, September 1982.

[5] W. Chen, M. Kifer, D. S. Warren, “HiLog: a foundation for higher-order
logic programming,” in J. of Logic Programming, vol. 15, #3, pp. 187-
230, 1993.

[6] J. Backus, “Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs,” CACM, vol. 21, #8, pp.
613–641, August 1978.

[7] S. Peyton Jones, “Tackling the Awkward Squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell”,
Engineering Theories of Software Construction, ed. T. Hoare, M. Broy,
R. Steinbruggen, IOS Press, pp. 47-96, 2001.

[8] A. Pettorossi, M. Proietti, R. Giugno, “Synthesis and transformation of
logic programs using unfold/fold proofs,” J. Logic Programming, vol.
41, 1997.

[9] P. Wadler, “How to declare an imperative,” ACM Computing Surveys,
vol. 29, #3, pp. 240-263, September, 1997.

[10] K. L. Clark, Micro-Prolog: Programming in Logic, Prentice Hall, 1984.

[11] Allegro Prolog, http://www.franz.com/support/documentation/8.2/doc/
prolog.html.

[12] The XSB Research Group, http://www.cs.sunysb.edu/~sbprolog/
index.html.

[13] D. S. Warren, K. Sagonas, private communication, 2000.

[14] L. Naish, “Higher-order logic programming in Prolog,” Proc. Workshop
on Multi-Paradigm Logic Programming, pp. 167-176, JICSLP’96, Bonn,
1996.

[15] M. Ward, “Language oriented programming”, Software Concepts and
Tools, vol. 15, pp. 147-161, 1994.

[16] P. Hudak, “Building domain-specific embedded languages,” ACM
Computing Surveys, vol. 28, #4es, December 1996.

[17] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, M. Felleisen,
“Languages as Libraries”, PLDI’11, 2011.

[18] P. Flener, Achievements and Prospects of Program Synthesis, LNAI
2407, pp. 310-346, 2002.

http://www.axiomaticlanguage.org/
http://www.franz.com/support/documentation/8.2/doc/%20prolog.html
http://www.franz.com/support/documentation/8.2/doc/%20prolog.html
http://www.cs.sunysb.edu/~sbprolog/%20index.html
http://www.cs.sunysb.edu/~sbprolog/%20index.html

