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Abstract— A logic programming language with potential software 

engineering benefit is described.  The language is intended as a 

specification language where the user specifies software 

functionality while ignoring efficiency.  The goals of the language 

are: (1) a pure specification language – “what, not how”, (2) small 

size, and (3) a metalanguage – able to imitate and thus subsume 

other languages.  The language, called “axiomatic language”, is 

based on the idea that any function or program can be defined by 

an infinite set of symbolic expressions that enumerates all 

possible inputs and the corresponding outputs.  The language is 

just a formal system for generating these symbolic expressions.  

Axiomatic language can be described as pure, definite Prolog 

with Lisp syntax, HiLog higher-order generalization, and “string 

variables”, which match a string of expressions in a sequence. 

Keywords- specification; metalanguage; logic programming; 
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I.  INTRODUCTION 

Programming languages affect programmer productivity.  
Prechelt [1] found that the scripting languages Perl, Python, 
Rexx, and Tcl gave twice the productivity over conventional 
languages C, C++, and Java.  A factor of 4-10 productivity gain 
has been reported for the declarative language Erlang [2].  Both 
studies showed that lines of source code per hour were roughly 
the same, regardless of language.  

With current programming languages programmers 
generally keep efficiency in mind.  Even in the logic program-
ming field, which is supposed to be declarative, the 
programmer must understand the execution process in order to 
write clauses that terminate and are efficient.  Program 
transformation potentially offers a way of achieving the goal of 
declarative programming where one can write specifications 
without considering their implementation and then have them 
transformed into efficient algorithms.  One may thus ask what 
kind of programming language would we want if we could 
ignore efficiency and assume that a smart translator could 
transform our specifications? 

This paper describes a logic programming language called 
“axiomatic language” [3] that is intended to be such a 
programming/specification language.  The goals of the 
language are as follows: 

1) a pure specification language –  There are no language 
features to control program execution.  The program-
mer writes specifications while ignoring efficiency and 
implementation.  Program transformation is thus 
required.  We assume that a translator can be built that 

can transform the specifications into efficient 
programs. 

2) small, but extensible – The language should be as 
small as possible with semantics as simple as possible.  
Nothing is built-in that can be defined.  This means 
that arithmetic would not be built-in.  (We assume the 
smart translator can “recognize” the definitions of 
arithmetic and replace them with the corresponding 
hardware operations.)  Of course, any small language 
must also be highly extensible, so that those features 
which are not built-in can be easily defined and used 
for specification as if they had been built-in. 

3) a metalanguage –   There are many ways in which one 
might want to specify software: first-order logic, set 
operations, domain specific languages, even a 
procedural language, etc.  An ideal language would be 
able to define within itself other language features and 
paradigms, which the user could then use for software 
specification.  With such a metalanguage capability, 
one could not only define functions, but also define 
new ways of defining functions. 

We also have the goal of beauty and elegance for the language. 

Axiomatic language is based on the idea that the external 
behavior of a program – even an interactive program – can be 
specified by a static infinite set of symbolic expressions that 
enumerates all possible inputs – or sequences of inputs – along 
with the corresponding outputs.  Axiomatic language is just a 
formal system for defining these symbolic expressions. 

Section II defines the language and section III gives 
examples.  Section IV shows how symbolic expressions can be 
interpreted as the input and output of real programs.  Section V 
discusses the novel aspects of the language and section VI 
gives conclusions.  This paper extends an earlier publication [4] 
with syntax extensions and higher-order examples. 

II. THE LANGUAGE 

This section defines axiomatic language, which is intended 
to fulfill the objectives identified in the introduction.  Section A 
introduces the language informally with examples.  The 
semantics and syntax of the core language are defined in 
section B, and section C gives some syntax extensions. 

A. An Overview 

Axiomatic language can be described as pure definite 
Prolog with Lisp syntax, HiLog [5] higher-order generalization, 
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and “string variables”, which match a string of expressions in a 
sequence.  A typical Prolog predicate is represented in 
axiomatic language as follows: 

  father(sue,X)   ->   (father Sue %x) 

Predicate and function names are moved inside the parentheses, 
commas are replaced with blanks, “expression” variables start 
with %, and both upper and lowercase letters, digits, and most 
special characters can be used for symbols.  

Clauses, or “axioms” as they are called here, are essentially 
the same as in traditional logic programming, as shown by the 
following definitions of natural number operations in successor 
notation: 

  (number 0).         ! set of natural numbers 

  (number (s %n))< (number %n). 

  (plus 0 % %)< (number %).       ! addition 

  (plus (s %1) %2 (s %3))< (plus %1 %2 %3). 

  (times 0 % 0)< (number %).   ! multiplication 

  (times (s %1) %2 %3)< (times %1 %2 %x), 

                        (plus %x %2 %3). 

The symbol < replaces the Prolog symbol :- and comments 
start after !.  These axioms generate “valid expressions” such as 
(number (s (s (s 0)))) and (plus (s 0) (s (s 0)) (s (s (s 0)))),  
which are interpreted as the statements “3 is a number” and “1 
+ 2 = 3”, respectively. 

The two main features of axiomatic language in comparison 
to Prolog are its higher-order property and string variables.  
The higher-order property comes from the fact that predicate 
and function names can be arbitrary expressions, including 
variables, and that variables can represent entire predicates in 
axioms.  Section III.A gives some higher-order examples. 

The other major feature of axiomatic language is its string 
variables.  A string variable, beginning with $, matches zero or 
more expressions in a sequence, while an expression variable 
%... matches exactly one.  String variables enable more concise 
definitions of predicates on lists: 

  (append ($1) ($2) ($1 $2))   ! concatenation 

  (member % ($1 % $2)).   ! member of sequence 

  (reverse () ()).      ! reversing a sequence 

  (reverse (% $) ($rev %))< 

    (reverse ($) ($rev)). 

Some example valid expressions are (append (a b) (c d) (a b 
c d)) and (member c (a b c)).  String variables can be 
considered a generalization of Prolog's list tail variables.  For 
example, the Prolog list [a, X | Z] would be represented in 
axiomatic language as the sequence (a %X $Z).  But string 
variables can occur anywhere in a sequence, not just at the end.  
Note that sequences in axiomatic language are used both for 
data lists and term arguments.  This single representation is 
convenient for representing code as data. 

B. The Core Language 

This section gives the definitions and rules of axiomatic 
language, while the next section gives some syntax extensions.  
In axiomatic language, functions and programs are specified by 

a finite set of “axioms”, which generate a (usually) infinite set 
of “valid expressions”, analogous to the way productions in a 
grammar generate strings.  An expression is 

an atom – a primitive, indivisible element, 
an expression variable, 
or a sequence of zero or more expressions and string 
variables. 

The hierarchical structure of expressions is inspired by the 
functional programming language FP [6]. 

Atoms are represented syntactically by symbols starting 

with the backquote: `abc, `+.  (The non-variable symbols 
seen previously are not atoms, as section C explains.)  
Expression and string variables are represented by symbols 

beginning with % and $, respectively: %expr, %, and $str, 

$1.  A sequence is represented by a string of expressions and 

string variables separated by blanks and enclosed in 

parentheses: (`xyz %n), (`M1 $ ()). 

An axiom consists of a conclusion expression and zero or 
more condition expressions, in one of the following formats: 

  conclu < cond1, …, condn.     ! n>0 

  conclu.          ! an unconditional axiom 

Axioms may be written in free format over multiple lines and a 
comment may appear on the right side of a line, following an 
exclamation point.  Note that the definition of expressions 
allows atoms and expression variables to be conclusion and 
condition expressions in axioms. 

An axiom generates an axiom instance by the substitution 
of values for the expression and string variables.  An 
expression variable can be replaced by an arbitrary expression, 
the same value replacing the same variable throughout the 
axiom.  A string variable can be replaced by a string of zero or 
more expressions and string variables.  For example, the axiom, 

  (`a (%x %y) $1)< (`b %x $w), (`c $w %y). 

has an instance, 

  (`a ((` %) `y))< (`b (` %) () `v), 

                   (`c () `v `y). 

by the substitution of (` %) for %x, `y for %y, the string ‘() 

`v’ for $w and the empty string for $1. 

The conclusion expression of an axiom instance is a valid 
expression if all the condition expressions of the axiom 
instance are valid expressions.  By default, the conclusion of an 
unconditional axiom instance is a valid expression.  For 
example, the two axioms, 

  (`a `b). 

  ((%) $ $)< (% $). 

generate the valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b 

`b), etc.  Note that the semantics of axiomatic language is based 
on definitions that enumerate a set of hierarchical expressions 
and not on the operation of a resolution algorithm.  Note also 
that valid expressions are just abstract symbolic expressions 
without any inherent meaning.  Their association with real 
computation and inputs and outputs is by interpretation, as 
described in section IV. 



C. Syntax Extensions 

The expressiveness of axiomatic language is enhanced by 
adding syntax extensions to the core language.  A single 
printable character in single quotes is syntactic shorthand for an 
expression that gives the binary code of the character: 

  ’A’  =  (`char (`0 `1 `0 `0  `0 `0 `0 `1)) 

This underlying representation, which would normally be 
hidden, provides for easy definition of character functions and 
relations, which are not built-in. 

A character string in single quotes within a sequence is 
equivalent to writing the single characters separately: 

  (… ’abc’ …)  =  (… ’a’ ’b’ ’c’ …) 

A character string in double quotes represents a sequence of 
those characters: 

  ”abc”  =  (’abc’)  =  (’a’ ’b’ ’c’) 

A single or double quote character is repeated when it occurs in 
a character string enclosed by the same quote character: 

”’””” = (’’’”’)=(’’’’ ’”’). 

A symbol that does not begin with one of the special 

characters ` % $ ( ) ’ ” ! is equivalent to an 

expression consisting of the atom ` and the symbol as a 
character sequence: 

  abc  =  (` ”abc”) 

This is useful for higher-order definitions, decimal number 
representation, and for defining inequality between symbols, 
which is not built-in. 

Other syntax extensions might be useful, such as in-line 
text, macros, or indentation-based syntax.  Any syntax exten-
sion that has a clear mapping to the core language could be 
considered as an addition to the language.  We view the 
definitions and rules of the core language as fixed and 
permanent, but its syntactic realization and any syntax 
extensions are open to refinement and enhancement. 

III. EXAMPLES 

This section gives some examples of axiomatic language 
and discusses its features.  Section A gives examples of higher-
order definitions and section B shows the metalanguage 
capability of the language. 

A. Higher-Order Definitions 

In axiomatic language, variables can be used for predicate 
names and for entire predicates.  These higher-order constructs 
can be powerful tools for defining sets and relations.  For 
example, a predicate for a finite set can be defined in a single 
expression, as follows:  

  (%set %elem)<(finite_set %set ($1 %elem $2)). 

      ! used to define finite sets: 

  (finite_set day 

      (Sun Mon Tue Wed Thu Fri Sat)). 

These axioms generate valid expressions such as (day Tue). 
Similarly, instead of defining facts in separate axioms, as 

would be done in Prolog, we can generate them from a single 
expression, as follows: 

  % < (valid $1 % $2). 

    ! specify multiple facts in one expression: 

  (valid (father Sue Tom) 

         (father Bill Tom) 

         (father Jane Bill)). 

From this we get valid expressions such as (father Jane Bill). 

The higher-order capability allows valid expressions to be 
combined into a single expression.  The following axioms form 
lists of expressions that are all valid: 

  (all_valid). 

  (all_valid % $)< % , (all_valid $). 

      ! all expressions in list are valid: 

  (grandparent %x %z)< 

     (all_valid (parent %x %y) (parent %y %z)). 

This expression represents the conjunction of valid expressions.  
We can also have a condition that asserts that at least one 
expression in a list is valid: 

  (one_valid $1 % $2)< % . 

    ! at least one expression in list is valid: 

  (parent %x %y)< 

     (one_valid (mother %x %y) (father %x %y)). 

This represents valid expression disjunction. 

Axioms themselves can be represented as expressions.  We 
can represent a single axiom in an expression as follows: 

  %conclu < (axiom %conclu $conds), 

            (all_valid $conds). 

     ! specify axiom in a single expression: 

  (axiom (sort %1 %2) 

         (permutation %1 %2) (ordered %2)). 

This is easily extended to represent a set of axioms in a single 
expression: 

  (axiom $axiom)< (axiom_set $1 ($axiom) $2). 

     ! a set of axioms in a single expression: 

  (axiom_set ((length () 0))  ! sequence length 

      ((length (% $) (s %n)) (length ($) %n))). 

This last axiom generates valid expressions such as (length (a b 
c) (s (s (s 0)))). 

The mapping of a relation or function to lists of arguments 
is easily defined.  First we need a utility that generates 
sequences of zero-or-more copies of an expression: 

  (zero_or_more % ()). 

  (zero_or_more % (% $))< (zero_or_more % ($)). 

We also need a utility that distributes a sequence of elements 
over the fronts of sequences: 

  (distr () () ()).   ! distr elems over seqs 

  (distr (%el $els) (($seq) $seqs) 

         ((%el $seq) $seqsx))< 

     (distr ($els) ($seqs) ($seqsx)). 

Now we make use of symbol representation to map previously-
defined functions and relations to sequences of arguments: 

  ((` ($rel ’*’)) $nulls)<   ! empty arg seqs 

    (zero_or_more () ($nulls)). 



  ((` ($rel ’*’)) $argseqsx)<  !non-empty seqs 

    ((` ($rel ’*’)) $argseqs), 

    ((` ($rel)) $args),      ! relation to map 

    (distr ($args) ($argseqs) ($argseqsx)). 

The expression (` ($rel)) matches the symbol for the relation 
name and (` ($rel '*')) represents that symbol with an asterisk 
appended.  These axioms generate valid expressions such as 
(day* (Sat Tue Tue)) and (append* ((a b) ()) ((c) (u v)) ((a b c) 
(u v))).  Note that our mapping definition automatically applies 
to predicates of any arity.  The higher-order property of 
axiomatic language is essentially the same as that of HiLog.  
That is, the language has higher-order syntax but the semantics 
are really first-order. 

B. Metalanguage Examples 

The higher-order property and string variables along with 
the absence of commas give axiomatic language its 
metalanguage property – its ability to imitate other languages.  
In this section we define the evaluation of nested functions in 
Lisp format.  First we need decimal number representation: 

  (finite_set digit ”0123456789”).   ! digits 

  (index %set %elem %index)<  ! index for elems 

    (finite_set %set ($1 %elem $2)), 

    (length ($1) %index). 

       ! -> (index digit ’2’ (s (s 0))) 

  (dec_sym (` (%digit)) %value)< 

    (index digit %digit %value).  

       ! -> (dec_sym 1 (s 0))  -- single digit 

  (dec_sym (` ($digits %digit)) %valuex)< 

    (dec_sym (` ($digits)) %value), 

    (index digit %digit %n), 

    (length (* * * * *  * * * * *) %10), 

    (times %value %10 %10val), 

    (plus %10val %n %valuex).  ! multi digits 

These axioms generate valid expressions, such as (dec_sym 

325 (s (s … (s 0)…))), which give the natural number 
value for a symbol of decimal digits.  We use the length 
function to hide the representation for the natural number 10.  
Now we define the evaluation of nested expressions: 

  (eval (quote %expr) %expr).    ! identity fn 

  (eval %dec_sym %value)<        ! decimal num 

    (dec_sym %dec_sym %value). 

  (eval (%fn $args) %result)<    ! eval func 

    (eval* ($args) ($results)),  ! eval args 

    (%fn $results %result).      ! func result 

These axioms turn some of the previously-defined predicates 
into functions which can be applied in a Lisp-like manner: 

  (eval (times (length (append (quote (a b c)) 

                      (reverse (quote (e d))))) 

               (plus 3 17) 

        ) %value) 

When this expression is used as a condition, the variable 
%value will get instantiated to the natural number 
representation for 100.  Of course, these nested expressions 
only make sense when formed from predicates that are 
functions that yield a single result as the last argument. 

A contrasting procedural-language example can be found in 
the original paper [4]. 

IV. SPECIFICATION BY INTERPRETATION 

We want to specify the external behavior of a program 
using a set of valid expressions.  A program that maps an input 
file to an output file can be specified by an infinite set of 
symbolic expressions of the form 

  (Program <input> <output>) 

where <input> is a symbolic expression for a possible input 
file and <output> is the corresponding output file.  For 
example, a text file could be represented by a sequence of lines, 
each of which is a sequence of characters.  A program that sorts 
the lines of a text file could be defined by valid expressions 
such as the following: 

  (Program (”dog” ”horse” ”cow”)   ! input 

           (”cow” ”dog” ”horse”))  ! output 

Axioms would generate these valid expressions for all possible 
input text files. 

An interactive program where the user types lines of text 
and the computer types lines in response could be represented 
by valid expressions such as 

  (Program <out> <in> <out> <in> … 

                      <out> <in> <out>) 

where <out> is a sequence of zero or more output lines typed 
by the computer and <in> is a single input line typed by the 
user.  Each Program expression gives a possible execution 
history.  Valid expressions would be generated for all possible 
execution histories.  This static set of symbolic expressions is 
interpreted to represent real inputs and outputs over time.  This 
is a completely pure approach to the awkward problem of 
input/output in declarative languages [7] and avoids Prolog's 
ugly, non-logical read/write operations.  Example programs can 
be found at the language website [3]. 

V. NOVELTY AND RELATED WORK 

This section discusses some of the more novel aspects of 
axiomatic language in comparison to Prolog and other 
languages: 

(1) specification by interpretation –  We specify the external 
behavior of programs by interpreting a static set of symbolic 
expressions.  Even languages with "declarative” input/output 
[9] have special language features, but axiomatic language has 
no input/output features at all – just interpretation of the 
generated expressions. 

(2) definition vs. computation semantics –  Axiomatic language 
is just a formal system for defining infinite sets of symbolic 
expressions, which are then interpreted.  Prolog semantics, in 
contrast, are based on a model of computation. 

(3) Lisp syntax –  Axiomatic language, like some other logic 
programming languages (MicroProlog [10], Allegro [11]), uses 
Lisp syntax.  This unified representation for code and data 
supports metaprogramming. 

(4) higher-order –  Predicate and function names can be 
arbitrary expressions, including variables, and entire predicates 
can be represented by variables.  This is the same as in HiLog, 
but with Lisp syntax.  The XSB [12] implementation of HiLog, 



however, does not allow variables for head predicates in 
clauses [13].  Higher-order programming can be done in 
standard Prolog, but requires special features, such as the ‘call’ 
predicate. [14] 

(5) non-atomic characters –  Character representation is not 
part of the core language, but defined as a syntax extension.  
There are no built-in character functions, but instead these 
would be defined in a library. 

(6) non-atomic symbols –  Non-atomic symbols eliminate the 
need for built-in decimal numbers, since they can be easily 
defined through library utilities. 

(7) flat sequences –  Sequences in axiomatic language are 
completely "flat" compared with the underlying head/tail “dot” 
representation of Prolog and Lisp. 

(8) string variables –  These provide pattern matching and 
metalanguage support.  String variables can yield an infinite set 
of most-general unifications.  For example, ($ a) unifies with (a 
$) with the assignments of $ = '', 'a', 'a a', .... 

(9) metalanguage –  The flexible syntax and higher-order 
capability makes axiomatic language well-suited to meta-
programming, language-oriented programming [15], and 
embedded domain-specific languages [16].  This language 
extensibility is similar to that of Racket [17], but axiomatic 
language is smaller. 

(10) no built-in arithmetic or other functions –  The minimal 
nature and extensibility of axiomatic language means that basic 
arithmetic and other functions are provided through a library 
rather than built-in.  But this also means that such functions 
have explicitly defined semantics and are more amenable to 
formal proof. 

(11) explicit definition of approximate arithmetic –  Since there 
is no built-in floating point arithmetic, approximate arithmetic 
must also be defined in a library.  But this means symbolically 
defined numerical results would always be identical down to 
the last bit, regardless of future floating point hardware. 

 (12) negation –  In axiomatic language a form of negation-as-
failure could be defined on encoded axioms. 

(13) no non-logical operations such as cut –  This follows from 
there being no procedural interpretation in axiomatic language. 

(14) no meta-logical operations such as var, setof, findall –  
These could be defined on encoded axioms. 

(15) no assert/retract –  A set of axioms is static.  Modifying 
this set must be done “outside” the language. 

VI. CONCLUSIONS 

A tiny logic programming language intended as a pure 
specification language has been described.  The language 
defines infinite sets of symbolic expressions which are 
interpreted to represent the external behavior of programs.  The 
programmer is expected to write specifications without concern 
about efficiency. 

 Axiomatic language should provide increased programmer 
productivity since specifications (such as the earlier sort 
definition) should be smaller and more readable than the 

corresponding implementation algorithms.  Furthermore, these 
definitions should be more general and reusable than 
executable code that is constrained by efficiency.  Note that 
most of the axioms of this paper could be considered reusable 
definitions suitable for a library.  Axiomatic language has fine-
grained modularity, which encourages the abstraction of the 
general parts of a solution from specific problem details and 
minimizes boilerplate code.  The metalanguage capability 
should enable programmers to define a rich set of specification 
tools. 

The challenge, of course, is the efficient implementation of 
the programmer's specifications. [18]  Higher-order definitions 
and the metalanguage capability are powerful tools for software 
specification, but make program transformation essential.  The 
difficult problem of transformation should be helped, however, 
by the extreme simplicity and purity of the language, such as 
the absence of non-logical operations, built-in functions, state 
changes, and input/output.  Future work will address the 
problem of transformation. 
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