
A Tiny Specification Metalanguage

Walter W. Wilson, Yu Lei
The University of Texas at Arlington

www.axiomaticlanguage.org

SEKE 2012

July 1-3, 2012
Redwood City, California

1

Language Goals

1) pure specification language
– what, not how
– smart translator needed

2) minimal, but extensible
– as small and simple as possible
– nothing built-in that can be defined

3) metalanguage
– able to imitate other languages

2

Specification by Interpretation

Idea: External behavior specified by a static infinite set of symbolic
expressions that enumerate inputs and corresponding outputs.

append function:

 (append () () ())

 ...

 (append (a b) (c d e) (a b c d e))

 ...

3

Specification by Interpretation (2)

a program:

 (Program <input> <output>)

sorting program:

 ...

 (Program ("dog" "horse" "cow") ! input

 ("cow" "dog" "horse")) ! output

 ...

 -- Infinite set of these expressions specifies sorting program.

4

Specification by Interpretation (3)
Interactive program:

 (Program <out> <in> <out> … <in> <out>)

 -- <out> is 0 or more lines typed by program
 -- <in> is 1 line typed by user

Each Program expression defines a possible execution history.
Infinite set of these expressions specifies the interactive program.
-- No awkward, ugly I/O operations.

Axiomatic language is just a formal system for defining these
infinite sets.

5

Overview

• Pure, definite Prolog with Lisp syntax
• Higher-order generalization [HiLog, 1993]
• “string variables”

6

The Core Language
Finite set of axioms generates infinite set of valid expressions.

an expression:
 an atom – a primitive, indivisible element,
 an expression variable,
 or a sequence of zero or more expressions and string variables.

syntax:
 atoms: `abc, `+
 expression variables: %1, %n
 string variables: $xyz, $
 sequences: (), (`M (%x $2))

7

The Core Language (2)
axiom – a conclusion expression and zero or more condition exprs:

 <conclu> < <cond1>, …, <condn>.

 <conclu>. ! unconditional axiom

axiom instance - substitute values for expression and string variables
 – arbitrary expression for an expression variable
 – string of expressions and string variables for a string variable

 (`a %x $1)< (`b $1 %x).

 (`a `c ($) `d)< (`b ($) `d `c).

8

The Core Language (3)

valid expression – conclusion of axiom instance is valid expression
 if all conditions are valid expressions

 (`a `b).

 ((%) $ $)< (% $).

 (`a `b),

 ((`a) `b `b),

 (((`a)) `b `b `b `b),

 …

9

Syntax Extensions
characters & strings:
 'A' = (`char (`0 `1 `0 `0 `0 `0 `0 `1))

 (… 'abc' …) = (… 'a' 'b' 'c' …)

 "abc" = ('abc') = ('a' 'b' 'c')

symbols:
 abc = (` "abc")

10

Example – Sorting
! Program – sorting program

 (Program %in %out)< (perm %in %out),(ordered %out).

! <, <= - ordering of char strings

 (< `0 `1). ! order of bits

 (< ($) ($ %x $x)). ! lexicographic ordering

 (< ($ %1 $1) ($ %2 $2))< (< %1 %2).

 (<= % %). (<= %1 %2)< (< %1 %2).

! ordered – ordered sequence

 (ordered ()). ! empty seq ordered

 (ordered (%)). ! 1-elem seq ordered

 (ordered (% %1 $))< (ordered (%1 $)), (<= % %1).

! perm – permutation of a sequence

 (perm () ()).

 (perm ($1 % $2) ($3 % $4))< (perm ($1 $2) ($3 $4)).
11

Lines of Code Comparison

phonecode [Prechelt 2000] – min & median non-comment loc:
• tcl – 44, 100
• rexx – 53, 120
• python – 42, 85
• perl – 49, 75
• Java – 107, 240
• C++ – 150, 235
• C – 188, 240
axiomatic language: 54 (non-utility code) (not tested)

12

Lines of Code Comparison (2)

minimum spanning forest:
 minimum spanning tree examples (non-i/o): 25, 34, 49, 65
 axiomatic language (MSF): 15 (non-utility) (not tested)

http://www.axiomaticlanguage.org/examples.html

13

Conclusions
• Language Attributes

– Pure specification – what declarative programming should be
– Minimal in the extreme
– Simple, clear semantics
– No ugly non-logical features
– Specification by interpretation
– No awkward non-declarative input/output
– Higher-order power
– Metalanguage capability

• SE benefit
– Greater reusability, smaller code size?
– Need more examples!

• Difficulty of implementation
14

	A Tiny Specification Metalanguage��Walter W. Wilson, Yu Lei�The University of Texas at Arlington��www.axiomaticlanguage.org��SEKE 2012�July 1-3, 2012�Redwood City, California�
	Language Goals
	Specification by Interpretation
	Specification by Interpretation (2)
	Specification by Interpretation (3)
	Overview
	The Core Language
	The Core Language (2)
	The Core Language (3)
	Syntax Extensions
	Example – Sorting
	Lines of Code Comparison
	Lines of Code Comparison (2)
	Conclusions

