
Submitted to:
ICLP 2020

This work is dedicated to the public domain.

Proof, Implementation, and CAD-Application Challenges
of Axiomatic Language

Walter W. Wilson
Lockheed Martin

Fort Worth, Texas, USA
wwwilson@acm.org

A type of logic programming called “axiomatic language” is described and some research challenges
are discussed: (1) proof in the language, (2) the automatic transformation of specifications to efficient
programs, and (3) application of the language to the representation of computer-aided design data.

1 Introduction

This paper describes some research challenges for a type of logic programming called “axiomatic lan-
guage” [3] [4] [http://www.axiomaticlanguage.org]. Axiomatic language is a pure specification
language so its implementation requires automatically transforming specifications to efficient programs
– a grand challenge of computer science. Proof is needed to guarantee correctness of this transformation
and to prove properties that help validate a specification. Axiomatic language is also proposed as an
underlying representation for computer-aided design data. Section 2 defines the language and sections
3-5 discuss the proof, implementation, and CAD-application research challenges.

2 Axiomatic Language

Axiomatic language can be summarized as pure, definite Prolog with Lisp syntax, HiLog-like higher-
order generality [1], plus “string variables”, which can match any substring in a sequence. The language
has the following goals:

1. Pure specification – you tell the computer what to do without telling it how to do it
2. Minimal, but extensible – as small as possible without impacting expressiveness
3. Metalanguage – one can define new language features and paradigms within the language

Axiomatic language is based on the idea that the external behavior of a program – even an in-
teractive program – can be represented by a static, infinite set of symbolic expressions. These ex-
pressions enumerate program inputs – or sequences of inputs – along with the corresponding out-
puts. For an interactive program each expression would represent the inputs/outputs of a particular
execution history as seen by an external observer. The set of expressions would enumerate all possi-
ble execution histories. The language is just a formal system for defining these infinite sets. [http:
//csl.stanford.edu/~christos/pldi2010.fit/wilson.specio.pdf]

2.1 The Core Language

This section gives the definitions and rules for axiomatic language – its complete semantics. In axiomatic
language a finite set of axioms generates a (usually) infinite set of valid expressions. An expression is

http://creativecommons.org/publicdomain/zero/1.0/
http://www.axiomaticlanguage.org
http://csl.stanford.edu/~christos/pldi2010.fit/wilson.specio.pdf
http://csl.stanford.edu/~christos/pldi2010.fit/wilson.specio.pdf

2 Challenges of Axiomatic Language

an atom – a primitive, indivisible element,
an expression variable,
or a sequence of zero or more expressions and string variables.

Syntactically, atoms are represented by symbols that begin with a backquote: ‘abc, ‘+. Expression and
string variables begin with % and $, respectively. Sequences have their elements separated by blanks and
enclosed in parentheses: (‘M () (% $1)).

An axiom consists of a conclusion expression and zero or more condition expressions:

<conclu> < <cond1>, ..., <condn>.

<conclu>. ! an unconditional axiom

Comments start with an exclamation point.
Axioms generate axiom instances by the substitution of values for the expression and string vari-

ables. An expression variable can be replaced by an arbitrary expression, the same value replacing the
same variable throughout the axiom. A string variable can be replaced by a string of zero or more
expressions and string variables. For example, the axiom

(‘A %x $w)< (‘B ($ %y %x)), (‘C $w).

has an instance

(‘A ‘x ‘u ‘v)< (‘B (() ‘x)), (‘C ‘u ‘v).

by the substitution of ‘x for %x, () for %y, the string ‘u ‘v for $w, and the null string for $.
Axiom instances generate valid expressions by the rule that if all the conditions of an axiom instance

are valid expressions, the conclusion is a valid expression. For example, the two axioms

(‘a ‘b).

((%) $ $)< (% $).

generate the valid expressions (‘a ‘b), ((‘a) ‘b ‘b), (((‘a)) ‘b ‘b ‘b ‘b),

2.2 Syntax Extensions

The expressiveness of axiomatic language is enhanced with some syntax extensions. A single character
in single quotes is equivalent to writing an expression that gives the binary code of the character using
bit atoms:

’A’ == (‘char (‘0 ‘1 ‘0 ‘0 ‘0 ‘0 ‘0 ‘1))

A character string in single quotes within a sequence is equivalent to writing the characters separately:

(... ’abc’ ...) == (... ’a’ ’b’ ’c’ ...)

A character string in double quotes represents the sequence of those characters:

"abc" == (’abc’) == (’a’ ’b’ ’c’)

A symbol that does not begin with ‘ % $ () ’ " is syntactic shorthand for this expression,

ABC == (‘ "ABC")

which gives the symbol as a character string and uses the atom represented by just the backquote.

W. Wilson 3

2.3 Examples

Here are axioms for natural numbers in successor notation and their addition:

(num 0). ! n0: zero is a natural number

(num (s %n))< (num %n). ! n1: the successor of a number is a number

(plus % 0 %)< (num %). ! p0: n + 0 = n

(plus %1 (s %2) (s %3))< ! p1: n1 + (n2+1) = (n3+1)

(plus %1 %2 %3). ! if n1 + n2 = n3

These axioms generate valid expressions such as (num (s (s (s 0)))) and (plus (s (s 0)) (s

0) (s (s (s 0)))), representing the statements “3 is a natural number” and “2 + 1 = 3”, respectively.

3 Proof in Axiomatic Language

Axiomatic language is minimal and pure, which should make it well-suited to proof. A set of axioms
generates a set of valid expressions. If an axiom is added to a set of axioms, additional valid expressions
may or may not be generated. For example, consider this candidate axiom n2:

(num (s (s %n)))< (num %n). ! n2: 2+n is a number, if n is a number

If added to the natural number axioms n0,n1, no new natural number valid expressions are generated.
A clause is defined the same as an axiom – a conclusion and zero or more conditions. (Axioms are

just specially designated clauses.) A clause is a valid clause with respect to a set of axioms if no new
valid expressions are generated if the clause is added to the set of axioms. Unfold/fold proofs can be
used to prove that a clause is valid. For example, unfolding axiom n1 with itself gives valid clause n2.

Valid clauses can be used to assert interesting properties. Let us add this “identical expressions”
axiom to the axioms for natural numbers and their addition:

(== % %). ! ==: argument expressions are identical

The following clause asserts that addition is commutative:

(== %12 %21)< (plus %1 %2 %12), (plus %2 %1 %21).

If addition is commutative the addition sums %12 and %21 will be identical, so no new == valid expres-
sions are generated and thus the clause is valid. A valid clause can be considered a “true statement”
about a set of axioms – a statement that is “implied” by the set of axioms.

Proof rules and example proofs can be found here: http://axiomaticlanguage.org/proof.htm

4 Implementation Challenge

The implementation of axiomatic language requires a system that can “understand” the meaning of a
user’s input specification and then automatically generate an equivalent efficient program from that
meaning. The system would need comprehensive built-in knowledge of programming concepts like
arithmetic, sorting, higher-order forms, etc. Once a specification is “understood”, the system would gen-
erate an equivalent efficient program using pre-stored algorithm knowledge such as binary arithmetic

http://axiomaticlanguage.org/proof.htm

4 Challenges of Axiomatic Language

using machine hardware operations. Proof would be embedded in the transformation knowledge to guar-
antee the equivalence of the generated efficient program with the input specification.

One can argue that no finite amount of programming knowledge can transform all possible specifi-
cations that a user might write. It will always be possible, for example, to come up with an arbitrarily
complicated representation for, say, natural numbers and their addition, which the transformation system
would not be able to “understand”. Our goal is a system with sufficient programming knowledge to au-
tomatically transform straightforward specifications for most typical problems. If an input specification
is not so straightforward or the problem not so typical, an expert would need to add knowledge to the
system so that successful automatic transformation can be achieved. Here are some “baby steps” toward
this grand challenge: http://axiomaticlanguage.org/LOPSTR18_LM_released.pdf

5 Application to Computer-Aided Design

The metalanguage capability of axiomatic language would make it a good host for an embedded domain-
specific language for computer-aided design data, instead of saving it in a CAD vendor’s proprietary file
format [http://axiomaticlanguage.org/A_Vision_for_CAD_released]. A declarative founda-
tion for engineering design would provide accessible mathematics, powerful scripting for design opti-
mization, and would be a good standard for long-term data preservation [http://axiomaticlanguage.
org/LOTAR_Thoughts]. It may be possible to prove correctness for geometric algorithms that use sym-
bolic approximate arithmetic, which could help guarantee, say, the safety of an airliner.

6 Conclusion

An idealistic, pure specification language has been presented. Unlike conventional logic programming,
axiomatic language does not have operational semantics based on resolution. It does not have non-logical
operations, built-in functions, state changes, or input/output operations. It also does not have built-in
negation (but see “extended axiomatic language” [http://axiomaticlanguage.org/EAL.html]).

Axiomatic language should support greater programmer productivity and software correctness. Spec-
ifications should be smaller, more readable, more reusable, and more likely to be correct than implemen-
tation code. The metalanguage capability of the language would support language-oriented programming
[2]. Proof would support the formal verification of high-assurrance software. Use of the language for
engineering design would be a billion-dollar application. In summary, axiomatic language is ambitious
in its goals, intriguing in its potential, and formidable in its realization, and is a rich source of research
challenges.

References
[1] Weidong Chen, Michael Kifer & David S. Warren (1993): HILOG: A Foundation for Higher-order Logic

Programming. J. Log. Program. 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J. Available at http:
//dx.doi.org/10.1016/0743-1066(93)90039-J.

[2] M. P. Ward (1995): Language Oriented Programming. Software—Concepts and Tools 15, pp. 147–161.
[3] Walter W. Wilson (1982): Beyond PROLOG: Software Specification by Grammar. SIGPLAN Not. 17(9), pp.

34–43, doi:10.1145/947955.947959. Available at http://doi.acm.org/10.1145/947955.947959.
[4] Walter W. Wilson & Yu Lei (2012): A Tiny Specification Metalanguage. In: Proc. of the 24th Intl. Conf. on

Software Engineering & Knowledge Engineering (SEKE’2012), Redwood City, CA, July, 2012, pp. 486–490.

http://axiomaticlanguage.org/LOPSTR18_LM_released.pdf
http://axiomaticlanguage.org/A_Vision_for_CAD_released
http://axiomaticlanguage.org/LOTAR_Thoughts
http://axiomaticlanguage.org/LOTAR_Thoughts
http://axiomaticlanguage.org/EAL.html
http://dx.doi.org/10.1016/0743-1066(93)90039-J
http://dx.doi.org/10.1016/0743-1066(93)90039-J
http://dx.doi.org/10.1016/0743-1066(93)90039-J
http://dx.doi.org/10.1145/947955.947959
http://doi.acm.org/10.1145/947955.947959

	Introduction
	Axiomatic Language
	The Core Language
	Syntax Extensions
	Examples

	Proof in Axiomatic Language
	Implementation Challenge
	Application to Computer-Aided Design
	Conclusion

