
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Axiomatic Language and Proof
Walter W. Wilson
wwwilson@acm.org

(retired)

ABSTRACT
A logic programming specification language called “axiomatic lan-
guage” is described. [http://www.axiomaticlanguage.org] This min-
imal and pure language is well-suited to proof. A method is given
for representing and proving assertions about specifications in the
language.

CCS CONCEPTS
• Software and its engineering→ Software verification.

KEYWORDS
formal verification, specification language, proof, logic program-
ming

ACM Reference Format:
Walter W. Wilson. 2022. Axiomatic Language and Proof. In Proceedings of
FormaliSE: International Conference on Formal Methods in Software Engineer-
ing (FormaliSE 2022). ACM, New York, NY, USA, 3 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
This paper describes a type of logic programming called “axiomatic
language” [2] [3] [http://www.axiomaticlanguage.org]. Axiomatic
language is a pure specification language so its implementation
requires automatically transforming specifications to equivalent
efficient programs – a grand challenge of computer science. Proof
is needed to guarantee correctness of this transformation and to
prove properties that help validate a specification. Section 2 defines
the language and section 3 describes a system of proof. Section 4
gives some final comments.

2 AXIOMATIC LANGUAGE
Axiomatic language has the following goals: (1) pure specification,
(2) extreme minimality, and (3) metalanguage extensibility. It is
based on the idea that the external behavior of a program can be
represented by a static, infinite set of symbolic expressions which
enumerate program inputs along with the corresponding outputs.
The language is just a formal system for defining these symbolic
expressions. [http://csl.stanford.edu/~christos/pldi2010.fit/wilson.
specio.pdf]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FormaliSE 2022, May 22–23, 2022, Pittsburgh, PA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

2.1 The Core Language
In axiomatic language a finite set of axioms generates a (usually)
infinite set of valid expressions. An expression is

an atom – a primitive, indivisible element,
an expression variable,
or a sequence of zero or more expressions and string variables.

Syntactically, atoms are represented by symbols that begin with
a backquote: `abc, `+. Expression and string variables begin with
% and $, respectively. Sequences have their elements separated by
blanks and enclosed in parentheses: (`M () (% $1)).

An axiom consists of a conclusion expression and zero or more
condition expressions:

<conclu> < <cond1>, ..., <condn>.
<conclu>. ! an unconditional axiom

Comments start with an exclamation point.
Axioms generate axiom instances by the substitution of values

for the expression and string variables. An expression variable can
be replaced by an arbitrary expression, the same value replacing
the same variable throughout the axiom. A string variable can be
replaced by a string of zero or more expressions and string variables.
For example, the axiom

(`A %x $w)< (`B ($ %y %x)), (`C $w).

has an instance
(`A `x `u `v)< (`B (() `x)), (`C `u `v).

by the substitution of `x for %x, () for %y, the string `u `v for $w,
and the null string for $.

Axiom instances generate valid expressions by the rule that if
all the conditions of an axiom instance are valid expressions, the
conclusion is a valid expression. By default, the conclusion of an
“unconditional” axiom instance is immediately a valid expression.
For example, the two axioms

(`a `b).
((%) $ $)< (% $).

generate the valid expressions (`a `b), ((`a) `b `b),
(((`a)) `b `b `b `b),

2.2 Syntax Extensions
The expressiveness of axiomatic language is enhanced with some
syntax extensions. A single character in single quotes is equivalent
to writing an expression that gives the binary code of the character
using bit atoms:

'A' == (`char (`0 `1 `0 `0 `0 `0 `0 `1))
A character string in single quotes within a sequence is equivalent
to writing the characters separately:

(... 'abc' ...) == (... 'a' 'b' 'c' ...)

A character string in double quotes represents the sequence of those
characters:

1

http://www.axiomaticlanguage.org
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
http://www.axiomaticlanguage.org
http://csl.stanford.edu/~christos/pldi2010.fit/wilson.specio.pdf
http://csl.stanford.edu/~christos/pldi2010.fit/wilson.specio.pdf
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

FormaliSE 2022, May 22–23, 2022, Pittsburgh, PA Walter W. Wilson

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

"abc" == ('abc') == ('a' 'b' 'c')

A symbol that does not begin with ` % $ () ' " is syntactic
shorthand for an expression that gives the symbol as a character
string,

ABC == (` "ABC")

and uses the atom represented by just the backquote.

2.3 Examples
Here are axioms for natural numbers in successor notation and the
plus operator:
(n 0). ! n0: zero is a natural number
(n (s %n))< (num %n). ! n1: successor of num is num

(p % 0 %)< (n %). ! p0: n + 0 = n
(p %1 (s %2) (s %3))< ! p1: n1 + (n2+1) = (n3+1)
(p %1 %2 %3). ! if n1 + n2 = n3

These axioms generate valid expressions such as (n (s (s 0)))
and (p (s (s 0)) (s 0) (s (s (s 0)))), representing the
statements “2 is a natural number” and “2 + 1 = 3”, respectively.

3 PROOF IN AXIOMATIC LANGUAGE
This section proposes a system of proof for axiomatic language.
Consider the following candidate axiom:

(n (s (s %)))< (n %). ! n2: 2+n is num if n is num

If added to the above natural number axioms n0,n1, no new natural
number valid expressions are generated.

3.1 Valid Clauses
Some definitions are needed. A clause is defined the same as an
axiom – a conclusion and zero or more conditions. (Axioms are
just specially designated clauses.) Assigning values to the clause
variables gives a clause instance. If all the conditions of a clause
instance are valid expressions for a set of axioms, then the conclu-
sion is a generated expression. A clause is a valid clause with
respect to a set of axioms if all its generated expressions are valid
expressions for those axioms. Thus, adding a valid clause to a set of
axioms does not add to the set of valid expressions. Clause n2 above
is thus a valid clause with respect to the natural number axioms.
One can say that a valid clause is “implied” by the set of axioms
– it is “redundant” for those axioms. It can be considered a “true
statement” about the axioms.

3.2 Proving Valid Clauses
Given a set of axioms, the following rules can be used to derive
valid clauses:
R1. An axiom is a valid clause.
R2. An instance of a valid clause is a valid clause.
R3. Adding a condition to a valid clause gives a valid clause.
R4. For any set of axioms we have this tautological valid clause:

% < % .

R5. For every valid expression ve we have this valid clause:
ve.

R6. If no instance of expression nve is a valid expression, its occur-
rence as a condition gives a valid clause:

% < nve.

R7. Given valid clauses A and B,
A: cA0 < cA1,...,cAna.
B: cB0 < cB1,...,cBnb.

where cA0,cB0 are conclusions and cA1..cAna,cB1..cBnb are condi-
tions, if some condition cAk is identical to conclusion cB0, then we
can construct valid clause C from clause A where condition cAk is
replaced by conditions cB1..cBnb of clause B:

C: cA0 < cA1,..,cAk-1,cB1,..,cBnb,cAk+1,..,cAna.

We call this an unfold of valid clause A condition k with valid clause
B.

Using the above rules we can show that clause n2 is valid:
a: (n (s %))< (n %). R1 - axiom n1
b: (n (s (s %)))< (n (s %)). R2 - instance of a
n2: (n (s (s %)))< (n %). R7 - unfold b with a

R8 - Induction Rule. Valid expressions can be assigned “level
numbers” based on the number of steps needed to generate the
expression from the set of axioms. An induction proof of clause C,

C: c0 < c1,..,ci,..,cn.

means showing that C is a valid clause for all levels of valid ex-
pressions that match condition ci. A complete unfold of ci with
respect to the set of axioms means finding all the most-general
unifications between ci and axiom conclusions. (That is, we find the
most-general instances of C and each axiom that make ci and the
axiom conclusion identical.) Each successful unification j gives a
clause Cj where the instantiated axiom conditions a1’,..,am’ replace
ci in the instantiated clause C:

complete unfold of C condition ci:
...
Cj: c0' < c1',..,ci-1',a1',..,am',ci+1',..,cn'.
...

These Cj clauses represent all the ways that C can generate ex-
pressions. Proving the Cj clauses valid proves clause C valid. Some
of the Cj clauses may have conditions that match the same valid
expressions as ci, but at a lower level number. We can treat C as
an induction hypothesis and allow a valid clause to be unfolded
against it (by rule R7) to prove a Cj clause. Note that some Cj clauses
represent induction base cases while others represent an induction
step.

3.3 Example Proofs
Here is an alternative set of axioms for the natural number plus
operator, with the induction on the first argument:

(p 0 % %)< (n %). ! pa0: 0 + n = n
(p (s %1) %2 (s %3))< ! pa1: (n1+1) + n2 = (n3+1)

(p %1 %2 %3). ! if n1 + n2 = n3

We will refer to pa0,pa1 as PA axioms and p0,p1 as P axioms. Note
that the P and PA axioms generate the same set of addition valid
expressions. Given axiom sets A and B, if all the A axioms are valid
clauses with respect to axiom set B and, conversely, all the B axioms
are valid clauses with respect to A, then A and B are equivalent
axiom sets.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Axiomatic Language and Proof FormaliSE 2022, May 22–23, 2022, Pittsburgh, PA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

We prove that PA axioms pa0,pa1 are valid clauses with respect
to axiom set p0,p1,n0,n1, as follows:

some valid clauses from n0,n1,p0,p1 using R1-R7:
p00: (p 0 0 0). unfold of p0 with n0
p0x: (p (s %) 0 (s %))< (n (s %)). instance of p0
p0y: (p (s %) 0 (s %))< (n %). unfold of p0x w n1
p1x: (p 0 (s %) (s %))< (p 0 % %). instance of p1
p1y: (p (s %1) (s %2) (s (s %3)))<(p (s %1) %2 (s %3)).

- instance of p1

prove pa0: (p 0 % %)< (n %).
R8 - complete unfold of pa0 cond 1 wrt ax set:
pa00: (p 0 0 0). = p00
pa01: (p 0 (s %) (s %))< (n %).
= unfold of p1x with induction hypothesis pa0

- since all Cj clauses are proved, pa0 is proved

prove pa1: (p (s %1) %2 (s %3))< (p %1 %2 %3).
R8 - complete unfold of pa1 cond 1 wrt ax set:
pa10: (p (s %) 0 (s %))< (n %). = p0y
pa11: (p (s %1) (s %2) (s (s %3)))< (p %1 %2 %3).
= unfold of p1y w induc hypoth pa1

- all Cj clauses proved, so pa1 is proved

Similar proofs show that P axioms are valid clauses with respect to
axiom set n0,n1,pa0,pa1. Thus, axiom sets P and PA are equivalent
– they generate the same set of valid expressions.

Let us add to our set of axioms the following axiom that asserts
that two expressions are identical:

(= % %). ! =: identical expressions

We use this in the following clause that asserts that our addition
definition is commutative:

C: (= %12 %21)< (p %1 %2 %12), (p %2 %1 %21).

For this clause to be valid, the addition results must always be the
same when argument order is reversed. We need to first prove that
the following supporting clause is valid:

=s: (= (s %a) (s %b))< (= %a %b).
proof - unfold cond 1 wrt ax set n0,n1,p0,p1,=:

=s': (= (s %) (s %)). = instance of =

The proof of the commutativity clause C is as follows:

C: (= %12 %21)< (p %1 %2 %12), (p %2 %1 %21).
unfold C cond 1 wrt ax set n0,n1,p0,p1,=:
C0: (= % %21)< (n %), (p 0 % %21).
unfold C0 cond 2 wrt equiv ax set n0,n1,pa0,pa1,=:

C00: (= % %)< (n %), (n %).
= axiom = with added conditions

C1: (= (s %12) %21)< (p %1 %2 %12), (p (s %2) %1 %21).
unfold C1 cond 2 wrt equiv ax set n0,n1,pa0,pa1,=:
C11: (= (s %12) (s %21))<(p %1 %2 %12),(p %2 %1 %21).

= unfold of =s w induc hypoth C

More example proofs can be found at http://axiomaticlanguage.org/
proof.htm.

4 FINAL COMMENTS
Axiomatic language is an elegant and potentially powerful formal
system for software specification. It provides an idealistic sepa-
ration between specification and implementation. The language
is completely pure – no built-in functions, no input/output op-
erations, and no procedural semantics. Its metalanguage extensi-
bility enables the definition and use of other language features
for specification within axiomatic language. Axiomatic language
should be a good host for embedded DSLs. [1] Future work will
address the grand challenge of axiomatic language implementation:
http://axiomaticlanguage.org/BabySteps.pdf

The concept of valid clauses provides a straightforward repre-
sentation for assertions about a specification. The proof system is
“close” to the language, which should make proof a more under-
standable and usable tool for users of the language. A near-term
goal is to define a formal representation for proofs and a program
to check those proofs.

REFERENCES
[1] M. P. Ward. 1995. Language Oriented Programming. Software—Concepts and Tools

15 (1995), 147–161.
[2] Walter W. Wilson. 1982. Beyond PROLOG: Software Specification by Grammar.

SIGPLAN Not. 17, 9 (Sept. 1982), 34–43. https://doi.org/10.1145/947955.947959
[3] Walter W. Wilson and Yu Lei. 2012. A Tiny Specification Metalanguage. In

Proceedings of the 24th International Conference on Software Engineering & Knowl-
edge Engineering (SEKE’2012), Hotel Sofitel, Redwood City, San Francisco Bay, USA
July 1-3, 2012. Knowledge Systems Institute Graduate School, 486–490. http:
//ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2012_Proceedings.pdf

3

http://axiomaticlanguage.org/proof.htm
http://axiomaticlanguage.org/proof.htm
http://axiomaticlanguage.org/BabySteps.pdf
https://doi.org/10.1145/947955.947959
http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2012_Proceedings.pdf
http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2012_Proceedings.pdf

	Abstract
	1 Introduction
	2 Axiomatic Language
	2.1 The Core Language
	2.2 Syntax Extensions
	2.3 Examples

	3 Proof in Axiomatic Language
	3.1 Valid Clauses
	3.2 Proving Valid Clauses
	3.3 Example Proofs

	4 Final Comments
	References

