
Automatic Programming Using Axiomatic Language

Walter W. Wilson & Yu Lei, The Univ. of Texas at Arlington

 This grand challenge seeks to improve programmer productivity and software reliability.

 We assert that the ideal programming language should be a specification language – you tell the

computer what to do without telling it how to do it. Specification definitions should be smaller, more

readable, and more reusable than procedural code constrained by efficiency. Thus a specification

language should give the programmer greater productivity. Specifications should also be easier to

validate as correct. The challenge is to automatically generate efficient programs from specifications by a

provably-correct process – the “automatic programming” problem.

 We assert that the ideal programming language should be a metalanguage – able to define within itself

other language features and paradigms which can then be used for specification without one leaving the

original language. We want a “universal” language that can incorporate the specification advantages of

any other language.

 But an ideal language should also be minimal – as small and simple as possible without sacrificing

expressiveness. We see elegance in reducing language to its most fundamental core. Nothing would be

built-in that can be defined. Such a minimal language must also be highly extensible so that those

features that are not built-in can be easily defined and used as if they had been built-in.

 This grand challenge proposes use of a logic programming language called “axiomatic language”

(http://www.axiomaticlanguage.org/) for this automatic programming effort. Axiomatic language may be

the perfect language for this problem. Being a formal language it avoids the issue of natural language

understanding that was a difficulty of earlier automatic programming efforts. Axiomatic language is a

pure specification language that defines the external behavior of a program without having anything to

say about its internal processing. Thus this automatic programming problem must be solved for this

language to be considered implemented. The metalanguage capability of axiomatic language would give

programmers flexibility and expressiveness in specification. Thus axiomatic language may stand a

greater chance of mainstream use than other formal languages. But this metalanguage capability adds

further to the automatic programming challenge.

 Axiomatic language is also extremely minimal. Its simplicity and purity would make it a good

candidate for formal methods and proof. Thus a guarantee of correctness of a generated program with

respect to its specification may be achievable. It may also be possible to prove assertions about

specifications to validate their correctness.

 One can argue from computability that no finite amount of knowledge can automatically transform all

possible specifications to efficient algorithms. Instead, the best we can hope for would be a system that

can transform most “typical” specifications and then rely on an expert to add new knowledge whenever

novel specifications are encountered. This is the goal of this grand challenge.

http://www.axiomaticlanguage.org/

